Algebra
Hi friends and my dear students! In this post, I have covered class -7 Algebra (Foundation IIT) Notes After Reading Mathematics Algebra (7th class ) IIT Notes level - I,2 -class work, please do share it with your friends. You can Learn Maths for All Classes here.
LEVEL - I
CLASS WORK
1. Find the sum of :
i) 3x + 2y – 4z and 8x – 5y + 2z.
ii) 2x3 + 3x2 – x – 5, x3 –3x2 +6 and x2 + 2x – 5
iii) 3x2 + 5x – 4, 2x + 3 – x2 and 8 – 3x + 7x2
iv) 3n2 + 5mn – 6m2, 2m2, -3mn –4n2, 2mn –
3m2 – 7n2
2. Subtract :
i) 4p + p2 from 3p2 – 8p
ii) a2 + 2ab from
b2 + 4ab
iii) 2abc – a2 – b2 from b2 + a2 – 2abc
3. What expression must be added to
5x2 – 7x + 2to produce 7x2 – 1 ?
4. Find the excess of 4p2
– 2pq + 3q2 over
2p2 - pq + 4q2?
5. How much is x3
– 3x2+ 5x – 2 less than
3 - 2x + x2- x3
6. The perimeter of a triangle is 8
+ 13a +7a2
and two of its sides are 2a2
+ a + 2 and
3a2 – 4a – 1. Find the third side of the triangle.
7. Two adjacent sides of a
rectangle are 6a + 9b and 8a – 4b. Find its perimeter.
8. The perimeter of a rectangle
is16x3–6x2+12x+4. If one of its sides is 8x2+3x. Find the other side.
9. Find the products of the
following :
i) 9x2 and (5x + 7) ii) (ab + bc) and ab
iii) (5x + 3y) and 2x2 iv) 4mn and (3m – 2n)
v) (-3pq) and (p2q + pq2)
vi) (5ab–7bx) and 4a2 bx2
vii) (6a2bc–7ab2c2) and a2b2
10. Find the products of the
following.
i) (2a – 5b) (3a –2b) vii) (2 + x) (4 – 2x)
ii) (2p + 1) (3q – 2) viii) (-x – 16) (x + 8)
iii) (2x – 3) (5x + 4) ix) (2x-3) (x + 8)
iv (a – 2b) (a + 3b) x) (4f –3g) (5f + 6g)
v) (a + b) (7a – 4b) xi) (x3+15) (2x3–3)
vi) (a +2b) (3a + 4b)
11. Expand the following using (a + b) 2 = a2
+ 2ab + b2
i) (5m + 3n) 2
ii) (a + 2b) 2
iii) (X/Y+Y/X) 2
iv) (2X +1/2X)2
v) (103)2 vi) (20 ½)2
12. Expand the following using (a – b) 2 = a2 – 2ab + b2
i) (3Y - 1/3Y) 2 ii)
(X/Y
- Y/X)2
iii) (3a/2b - 2b/3a) 2
iv) (1 -
a)2
v) ( x - 1/2 ) 2 vi) (97)2
vii) (99 1/2) 2
Also Check
IITJEE 7th class Introduction to Algebra Notes
SSC (10th class) Trigonometry Exercise - 11.1 Solution
SSC(10th class) Trigonometry Exercise - 11.1 Solutions
13. Evaluate, using (a + b) (a – b)
= a2 –b2
i) (3p + 2q) (3p – 2q)
ii) (a x + b) (a x – b)
iii) (x+3/4) (x+3/4)
iv) 101 x
99
v) 8.2 x 7.8
vi. (n + 0.6)
(n – 0.6)
viii) 412
- 352
ix) 100 1/2 x 99 ½
x)
(n+1/n) (n-1/n) (n2+1/n2) (n4+1/n4)
xi) (1+p) (1-p)
(1+p4) (1+p8)
14. If a + b = 5 and ab = 12 find a2 + b2
15. If x – y = 7 and xy = 7 find x2+
y2
16. If 3x + 4y = 16 and xy = 4 then find value of 9x2 + 16y2
17. Simplify :-
(i) 175 x 175 + 2 x 175 x 25 + 25 x 25
(ii) 322 x 322 – 2 x 322 x 22 + 22 x 22
18. p +1/p =√ 5
(i) p 2 +1/p 2 (ii) p4+1/p4
19. Evaluate using
(a + b + c)2
= a2 + b2 + c2 +2ab +2bc+2ca
i) (2x + 3y +
4z) 2 ii) (x + 2y –
3z) 2
iii) (3x – 4y –
z) 2 iv) (2a + 3b –
4c) 2
v) (2a – b –
c) 2 vi) (p3 + p2 +
1)
vii) (X+1+1/X)2
20. If a + b + c = 0 and a2
+ b2 + c2 = 16 find the Value
of ab + bc + ca.
21. If x2 + y2
+ z2 = 16 and xy + yz + zx = 10 Find the
value of x + y + z
22. If a + b + c =
9 and ab + bc + ca = 23 Find the
value of a2+ b2 + c2
23. Expand the following, using (a
+ b)3 = a3 + 3a2b + 3ab2 + b3
(or) (a + b)3 = a3 + b3 + 3ab (a + b).
i) (a + 2)3 ii) (a+1/a)3
iii) (2x + 1)3 iv) (2x + 3y) 3
v) (2x + y) 3
24. Expand the following using (a –
b)3 =
a3 – 3a2b +
3ab2 – b3 (or) (a – b)3 = a3–b3–3ab(a–b)
i) (3x – 5y) 3 ii) (3x – 2y) 3
iii) 993
HOME WORK
1. Find the sum of :
i) 3a – 5b + 2c and 2a + 3b – c
ii) a2 + a – 3, 2a + 3a2 + 6 and 4a2 – 5a + 8
iii) 5a + 6b – 3c, 4b + c – 3a and a – 6c – 3b.
i) 5a – 3b + 2c from 4a – b - 2c
ii) a2 + 3a – a3 – 6 from 2a2 + a – 2a3 + 3
3. Find the perimeter of triangle whose sides are
2y + 3z, z –
y, 4y – 2z.
4. Find the
products of the following :
i) 2x and (x + y) ii) 2p and (3p
+ 4q)
iii) xy and (x – 2y)
5. Find the
products of the following.
i) (x + 2) (x + 3) iv) (c + 7) (c- 5)
ii) (x + 6) (x – 6) v) (x + a) (x –b)
iii) (x – a) (x + b) vi) (x –a) (x – b)
vii) (x + a) (x + b)
6. Expand
the following using (a + b)2 = a2 + 2ab + b2
i) (a – 1/a) 2
ii) (3p – 4q) 2
iii) (49) 2
8. Evaluate, using (a
+ b) (a – b) = a2 – b2
i) (x + a) (x
– a) ii) (2x + 7) (2x – 7)
iii) (7m– 4n)
(7m + 4n) iv) 442 - 392
v) 20.5 - 19.5
9. If 2x –
3y = 8 and xy = 2 then find the value of
4x2
+ 9y2
10.
Evaluate using
(a + b + c)
2 = a2 + b2 + c2 +2ab + 2bc + 2ca
i) (a + 2b +
c) 2 ii) (x – y + z) 2
iii) (x2 + x –
1) 2 iv) (x – 2y – 3z) 2
11. Solve (x + a) 3 by using suitable formula
12. Expand the following using (a – b) 3 = a3
– 3a2b+ 3ab2 – b3 (or) (a – b)3 = a3–b3–3ab(a
– b)
i) (x
– a)3 ii)
(x – 2y)3
iii) (2x
– 1)3
13. If x
+ y = 10 and xy = 21 then find the value of x3 + y3.
14. Divide :
i) –28p2qr3
by –7pqr
ii) 9p2q3r4
by – 12pq4r2
15. Divide the given polynomial by the given monomial
i) 15(a3b2c2
– a2b3c2 + a2b2c3)
÷ 3abc
ii) (3p3
– 9p2q – 6pq2) ÷ (–3p)
CLASSWORK
1. Multiply
together :
a) x3- 7x + 5, x2- 2x + 3
b) x – 2y + 6,
x – 2y – 6
c) a – 2b + c,
a + 2b – c
d) 3x2
– 2x – 5, 2x – 5
e) x4- x2y2 + y4, x2+ y2
f) x2+
x – 2, x2 + x – 6
2. Add the
following :
a) 5x2
– 2xy + 8y2, 3xy-7y2 – 2x2
and y2
+ xy – 4x2
b) p2
+ 2q2 – 5r2 + 2pqr, q2 – 3p2 + 2r2
– 5pqr and
r2 – p2 – 2q2 + pqr
3. Subtract:
3xy2
– 3x2y + x3 – y3 from x3 + 3x2y
+ 3xy2 + y3
4.Find (i) A + B + C (ii) 3A – 2B – C
5. Find the
zeros of the following:
i) an
+ am x (a ≠ 0) ii) a2x2 – 1
iii) xn iv) 1 –ax (a ≠ 0)
6. Find the
degree of
[1 + 2x + 3x2 + 4x3 + ……….(999
terms)].
7. If two
polynomials of degrees m, n are
multiplied,
then find the degree of the resultant polynomial. Explain with one example.
8. How much
is 4a2 – 5ab + 9b2 greater then
10b2 – 5a2
+ 11ab?
9. If A = a
+ b + c, B = a – b + c and C = a + b – c
and D = -a
+ b + c, find (A + C) – (B + D).
This article contains a lot of valuable info. I am amazed by the quality of the info and also it is a beneficial article for us, Thanks for share it.Abacus Training
ReplyDelete